Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.18.572191

ABSTRACT

Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.27.530277

ABSTRACT

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which can readily mutate to escape acquired immunity. Other regions in the spike S2 subunit, such as the fusion peptide and the stem helix, are highly conserved across sarbecoviruses and recognized by broadly reactive antibodies, providing hope that targeting these epitopes by vaccination could offer protection against both current and emergent viruses. Here we employed computational modeling to design epitope scaffolds that display the fusion peptide and the stem helix epitopes. The engineered proteins bound both mature and germline versions of multiple broad and protective human antibodies with high affinity. Binding specificity was confirmed both biochemically and via high resolution crystal structures. Finally, the epitope scaffolds showed potent engagement of antibodies and memory B-cells from subjects previously exposed to SARS-CoV2, illustrating their potential to elicit antibodies against the fusion peptide and the stem helix by vaccination.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.26.497634

ABSTRACT

SARS-CoV-2 Omicron variants have generated a world-wide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of antibodies induced by vaccination. Here, we describe the SARS-CoV-2 neutralizing SP1-77 antibody that was generated from a humanized mouse model with a single human VH1-2 and V{kappa}1-33-associated with immensely diverse complementarity-determining-region-3 (CDR3) sequences. SP1-77 potently and broadly neutralizes SARS-CoV-2 variants of concern and binds the SARS-CoV-2 spike protein receptor-binding-domain (RBD) via a novel-CDR3-based mode. SP1-77 does not block RBD-binding to the ACE2-receptor or endocytosis step of viral entry, but rather blocks membrane fusion. Our findings provide the first mechanistic insight into how a non-ACE2 blocking antibody potently neutralizes SARS-CoV-2, which may inform strategies for designing vaccines that robustly neutralize current and future SARS-CoV-2 variants.

5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.26.477915

ABSTRACT

Coronavirus vaccines that are highly effective against SARS-CoV-2 variants are needed to control the current pandemic. We previously reported a receptor-binding domain (RBD) sortase A-conjugated ferritin nanoparticle (RBD-scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected monkeys from SARS-CoV-2 WA-1 infection. Here, we demonstrate SARS-CoV-2 RBD-scNP immunization induces potent neutralizing antibodies against all eight SARS-CoV-2 variants tested including the Beta, Delta, and Omicron variants in non-human primates (NHPs). The Omicron variant was neutralized by RBD-scNP-induced serum antibodies with a mean of 4.3-fold reduction of ID50 titers compared to SARS-CoV-2 D614G. Immunization with RBD-scNPs protected NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protected mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect NHPs and mice from multiple different SARS-related viruses. Such a vaccine could provide the needed immunity to slow the spread of and reduce disease caused by SARS-CoV-2 variants such as Delta and Omicron.


Subject(s)
Severe Acute Respiratory Syndrome
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.17.431492

ABSTRACT

Betacoronaviruses (betaCoVs) caused the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, and now the SARS-CoV-2 pandemic. Vaccines that elicit protective immune responses against SARS-CoV-2 and betaCoVs circulating in animals have the potential to prevent future betaCoV pandemics. Here, we show that immunization of macaques with a multimeric SARS-CoV-2 receptor binding domain (RBD) nanoparticle adjuvanted with 3M-052-Alum elicited cross-neutralizing antibody responses against SARS-CoV-1, SARS-CoV-2, batCoVs and the UK B.1.1.7 SARS-CoV-2 mutant virus. Nanoparticle vaccination resulted in a SARS-CoV-2 reciprocal geometric mean neutralization titer of 47,216, and robust protection against SARS-CoV-2 in macaque upper and lower respiratory tracts. Importantly, nucleoside-modified mRNA encoding a stabilized transmembrane spike or monomeric RBD protein also induced SARS-CoV-1 and batCoV cross-neutralizing antibodies, albeit at lower titers. These results demonstrate current mRNA vaccines may provide some protection from future zoonotic betaCoV outbreaks, and provide a platform for further development of pan-betaCoV nanoparticle vaccines.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.31.424729

ABSTRACT

SARS-CoV-2 neutralizing antibodies (NAbs) protect against COVID-19, making them a focus of vaccine design. A safety concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated potent NAbs against the receptor-binding domain (RBD) and the N-terminal domain (NTD) of SARS-CoV-2 spike protein from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV-1 infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of antibody binding. Select RBD NAbs also demonstrated Fc receptor-{gamma} (Fc{gamma}R)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated Fc{gamma}R-independent in vitro infection enhancement. However, both in vitro neutralizing and infection-enhancing RBD or infection-enhancing NTD antibodies protected from SARS-CoV-2 challenge in non-human primates and mice. One of 30 monkeys infused with enhancing antibodies had lung pathology and bronchoalveolar lavage cytokine evidence suggestive of enhanced disease. Thus, these in vitro assessments of enhanced antibody-mediated infection do not necessarily indicate biologically relevant in vivo infection enhancement.


Subject(s)
Severe Acute Respiratory Syndrome , Tumor Virus Infections , COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.31.424961

ABSTRACT

Host-virus protein-protein interaction is the key component of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lifecycle. We conducted a comprehensive interactome study between the virus and host cells using tandem affinity purification and proximity labeling strategies and identified 437 human proteins as the high-confidence interacting proteins. Functional characterization and further validation of these interactions elucidated how distinct SARS-CoV-2 viral proteins participate in its lifecycle, and discovered potential drug targets to the treatment of COVID-19. The interactomes of two key SARS-CoV-2 encoded viral proteins, NSP1 and N protein, were compared with the interactomes of their counterparts in other human coronaviruses. These comparisons not only revealed common host pathways these viruses manipulate for their survival, but also showed divergent protein-protein interactions that may explain differences in disease pathology. This comprehensive interactome of coronavirus disease-2019 provides valuable resources for understanding and treating this disease.


Subject(s)
Coronavirus Infections , COVID-19
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.30.424906

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has become a serious global threat. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for this pandemic has imposed a severe burden on the medical settings. The spike (S) protein of SARS-CoV-2 is an important structural protein playing a key role in the viral entry. This protein is responsible for the receptor recognition and cell membrane fusion process. The recent reports of the appearance and spread of new SARS-CoV-2 strain has raised alarms. It was reported that this new variant containing the prominent active site mutation in the RBD (N501Y) was rapidly spreading within the population. The reported N501Y mutation within the spike's essential part, known as the receptor-binding domain has raised several questions. Here in this study we have tried to explore the effect of N501Y mutation within the spike protein using several in silico approaches


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.02.424974

ABSTRACT

COVID-19, caused by SARS-CoV-2, was first reported in China in 2019 and has transmitted rapidly around the world, currently responsible for 83 million reported cases and over 1.8 million deaths. The mode of transmission is believed principally to be airborne exposure to respiratory droplets from symptomatic and asymptomatic patients but there is also a risk of the droplets contaminating fomites such as touch surfaces including door handles, stair rails etc, leading to hand pick up and transfer to eyes, nose and mouth. We have previously shown that human coronavirus 229E survives for more than 5 days on inanimate surfaces and another laboratory reproduced this for SARS-CoV-2 this year. However, we showed rapid inactivation of Hu-CoV-229E within 10 minutes on different copper surfaces while the other laboratory indicated this took 4 hours for SARS-CoV-2. So why the difference? We have repeated our work with SARS-CoV-2 and can confirm that this coronavirus can be inactivated on copper surfaces in as little as 1 minute. We discuss why the 4 hour result may be technically flawed.


Subject(s)
COVID-19
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.02.424917

ABSTRACT

SARS-CoV-2 infection of the respiratory system can evolve to a multi-system disease. Excessive levels of proinflammatory cytokines, known as a "cytokine storm" are associated with high mortality rates especially in the elderly and in patients with age-related morbidities. Senescent cells, characterized by secretion of such cytokines (Senescence Associated Secretory Phenotype - SASP), are known to occur in this context as well as upon a variety of stressogenic insults. Applying both: i) a novel "in house" antibody against the spike protein of SARS-CoV-2 and ii) a unique senescence detecting methodology, we identified for the first time in lung tissue from COVID-19 patients alveolar cells acquiring senescent features harboring also SARS-CoV-2. Moreover, using the same detection workflow we demonstrated the inflammatory properties of these cells. Our findings justify the application of senotherapeutics for the treatment or prevention of COVID-19 patients.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.30.178897

ABSTRACT

SummaryThe COVID-19 pandemic caused by SARS-CoV-2 has escalated into a global crisis. The spike (S) protein that mediates cell entry and membrane fusion is the current focus of vaccine and therapeutic antibody development efforts. The S protein, like many other viral fusion proteins such as HIV-1 envelope (Env) and influenza hemagglutinin, is glycosylated with both complex and high mannose glycans. Here we demonstrate binding to the SARS-CoV-2 S protein by a category of Fab-dimerized glycan-reactive (FDG) HIV-1-induced broadly neutralizing antibodies (bnAbs). A 3.1 Å resolution cryo-EM structure of the S protein ectodomain bound to glycan-dependent HIV-1 bnAb 2G12 revealed a quaternary glycan epitope on the spike S2 domain involving multiple protomers. These data reveal a new epitope on the SARS-CoV-2 spike that can be targeted for vaccine design.HighlightsFab-dimerized, glycan-reactive (FDG) HIV-1 bnAbs cross-react with SARS-CoV-2 spike.3.1 Å resolution cryo-EM structure reveals quaternary S2 epitope for HIV-1 bnAb 2G12.2G12 targets glycans, at positions 709, 717 and 801, in the SARS-CoV-2 spike.Our studies suggest a common epitope for FDG antibodies centered around glycan 709.Competing Interest StatementThe authors have declared no competing interest.View Full Text


Subject(s)
HIV Infections , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL